NAME

DATE

PERIOD

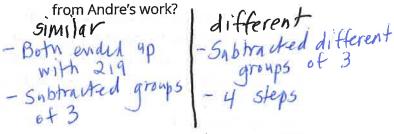
Tuesday 3/10 Unit 5, Lesson 9: Using the Partial Quotients Method

18

1. Here is one way to find $2,105 \div 5$ using partial quotients.

			4	2	1		
		117			1		
				2	0		
			4	0	0		
5	ſ	2 2	1	0	5		
	-	2	0	0	0		
			1	0	5		
	-		1	0	0		
					5		
			-		5		
					0		

Show a different way of using partial quotients to divide 2,105 by 5.


$$\begin{array}{c}
20 \\
200 \\
\hline
200 \\
5 | 200 \\
\hline
5 | 200 \\
\hline
1000 \\
\hline
1000 \\
\hline
1000 \\
\hline
1000 \\
\hline
5 \times 200 \\
\hline
5 \times$$

2. Andre and Jada both found $657 \div 3$ using the partial quotients method, but they did the calculations differently, as shown here.

							2	1	9	
	2	1	9						9	
			9					6	0	
		1	0				1	0	0	
	2	0	0					5	_	
3	16	5	7			3	6	5	7	
	- 6	0	0				- 1	5	0	
		5	7				5	0	7	
	-	3	0		Tirs		- 3	0	0	
		2	7				2	0	7	
	-	2	7				- 1	8	0	
			0					2	7	
							_	2	7	
									0	

Andre's Work

a. How is Jada's work similar to and different

b. Explain why they have the same answer.

Because there are
219 groups of 3 in
657, how you divide
will change the number
of steps, but not
the answer (1)

3. Which might be a better way to evaluate $1,150 \div 46$: drawing base-ten diagrams or using the partial

Jada's Work

NAME

quotients method? Explain your reasoning.

4. Here is an incomplete calculation of $534 \div 6$.

Write the missing numbers (marked with "?") that would make the calculation complete.

- 5. Use the partial quotients method to find $1,032 \div 43$.
- 6. Which of the polygons has the greatest area?

A. A rectangle that is 3.25 inches wide and 6.1 inches long. $3.25 \times 6.1 = (9.825) \text{ in}^2$

B. A square with side length of 4.6 inches. $4.6 \times 4.6 = 2(.16)$ in 2

C. A parallelogram with a base of 5.875 inches and a height of 3.5 inches. 5.875 × 3.5 = 20.5625 in C. A triangle with a base of 7.18 inches and a height of 5.4 inches.

D. A triangle with a base of 7.18 inches and a height of 5.4 inches.

(from Unit 5, Lesson 8)

1×7.18×5.4 = 19.386 in

7. One micrometer is a millionth of a meter. A certain spider web is 4 micrometers thick. A fiber in a shirt is 1 hundred-thousandth of a meter thick. .000004

a. Which is wider, the spider web or the fiber? Explain your reasoning.

Fiher .00001 7 .000004

b. How many meters wider?